Copied to
clipboard

G = C42.394D4order 128 = 27

27th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.394D4, (C2×Q8)⋊3C8, C4.8(C22⋊C8), (C2×C42).16C4, (C2×C4).14M4(2), (C22×Q8).16C4, C22.11(C22×C8), C4.22(C4.10D4), C22⋊C8.156C22, (C22×C4).425C23, (C2×C42).147C22, C23.162(C22×C4), C22.14(C2×M4(2)), C42.12C4.13C2, C43(C22.M4(2)), C2.3(C23.C23), C22.M4(2).12C2, (C2×C4×Q8).1C2, (C2×C4).4(C2×C8), (C2×C4⋊C4).31C4, C2.9(C2×C22⋊C8), (C2×C4).1122(C2×D4), (C22×C4).42(C2×C4), C2.2(C2×C4.10D4), (C2×C4⋊C4).734C22, C22.93(C2×C22⋊C4), (C2×C4).311(C22⋊C4), SmallGroup(128,193)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.394D4
C1C2C22C2×C4C22×C4C2×C42C2×C4×Q8 — C42.394D4
C1C2C22 — C42.394D4
C1C2×C4C2×C42 — C42.394D4
C1C2C22C22×C4 — C42.394D4

Generators and relations for C42.394D4
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=b, ab=ba, ac=ca, ad=da, cbc-1=a2b-1, bd=db, dcd-1=a2bc3 >

Subgroups: 204 in 124 conjugacy classes, 62 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C4×C8, C22⋊C8, C4⋊C8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C22×Q8, C22.M4(2), C42.12C4, C2×C4×Q8, C42.394D4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C22⋊C8, C4.10D4, C2×C22⋊C4, C22×C8, C2×M4(2), C2×C22⋊C8, C23.C23, C2×C4.10D4, C42.394D4

Smallest permutation representation of C42.394D4
On 64 points
Generators in S64
(1 19 57 55)(2 20 58 56)(3 21 59 49)(4 22 60 50)(5 23 61 51)(6 24 62 52)(7 17 63 53)(8 18 64 54)(9 41 26 36)(10 42 27 37)(11 43 28 38)(12 44 29 39)(13 45 30 40)(14 46 31 33)(15 47 32 34)(16 48 25 35)
(1 63 5 59)(2 4 6 8)(3 57 7 61)(9 32 13 28)(10 12 14 16)(11 26 15 30)(17 51 21 55)(18 20 22 24)(19 53 23 49)(25 27 29 31)(33 35 37 39)(34 45 38 41)(36 47 40 43)(42 44 46 48)(50 52 54 56)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 39 63 33 5 35 59 37)(2 40 4 43 6 36 8 47)(3 42 57 44 7 46 61 48)(9 18 32 20 13 22 28 24)(10 19 12 53 14 23 16 49)(11 52 26 54 15 56 30 50)(17 31 51 25 21 27 55 29)(34 58 45 60 38 62 41 64)

G:=sub<Sym(64)| (1,19,57,55)(2,20,58,56)(3,21,59,49)(4,22,60,50)(5,23,61,51)(6,24,62,52)(7,17,63,53)(8,18,64,54)(9,41,26,36)(10,42,27,37)(11,43,28,38)(12,44,29,39)(13,45,30,40)(14,46,31,33)(15,47,32,34)(16,48,25,35), (1,63,5,59)(2,4,6,8)(3,57,7,61)(9,32,13,28)(10,12,14,16)(11,26,15,30)(17,51,21,55)(18,20,22,24)(19,53,23,49)(25,27,29,31)(33,35,37,39)(34,45,38,41)(36,47,40,43)(42,44,46,48)(50,52,54,56)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,39,63,33,5,35,59,37)(2,40,4,43,6,36,8,47)(3,42,57,44,7,46,61,48)(9,18,32,20,13,22,28,24)(10,19,12,53,14,23,16,49)(11,52,26,54,15,56,30,50)(17,31,51,25,21,27,55,29)(34,58,45,60,38,62,41,64)>;

G:=Group( (1,19,57,55)(2,20,58,56)(3,21,59,49)(4,22,60,50)(5,23,61,51)(6,24,62,52)(7,17,63,53)(8,18,64,54)(9,41,26,36)(10,42,27,37)(11,43,28,38)(12,44,29,39)(13,45,30,40)(14,46,31,33)(15,47,32,34)(16,48,25,35), (1,63,5,59)(2,4,6,8)(3,57,7,61)(9,32,13,28)(10,12,14,16)(11,26,15,30)(17,51,21,55)(18,20,22,24)(19,53,23,49)(25,27,29,31)(33,35,37,39)(34,45,38,41)(36,47,40,43)(42,44,46,48)(50,52,54,56)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,39,63,33,5,35,59,37)(2,40,4,43,6,36,8,47)(3,42,57,44,7,46,61,48)(9,18,32,20,13,22,28,24)(10,19,12,53,14,23,16,49)(11,52,26,54,15,56,30,50)(17,31,51,25,21,27,55,29)(34,58,45,60,38,62,41,64) );

G=PermutationGroup([[(1,19,57,55),(2,20,58,56),(3,21,59,49),(4,22,60,50),(5,23,61,51),(6,24,62,52),(7,17,63,53),(8,18,64,54),(9,41,26,36),(10,42,27,37),(11,43,28,38),(12,44,29,39),(13,45,30,40),(14,46,31,33),(15,47,32,34),(16,48,25,35)], [(1,63,5,59),(2,4,6,8),(3,57,7,61),(9,32,13,28),(10,12,14,16),(11,26,15,30),(17,51,21,55),(18,20,22,24),(19,53,23,49),(25,27,29,31),(33,35,37,39),(34,45,38,41),(36,47,40,43),(42,44,46,48),(50,52,54,56),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,39,63,33,5,35,59,37),(2,40,4,43,6,36,8,47),(3,42,57,44,7,46,61,48),(9,18,32,20,13,22,28,24),(10,19,12,53,14,23,16,49),(11,52,26,54,15,56,30,50),(17,31,51,25,21,27,55,29),(34,58,45,60,38,62,41,64)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N4O···4V8A···8P
order12222244444···44···48···8
size11112211112···24···44···4

44 irreducible representations

dim111111112244
type+++++-
imageC1C2C2C2C4C4C4C8D4M4(2)C4.10D4C23.C23
kernelC42.394D4C22.M4(2)C42.12C4C2×C4×Q8C2×C42C2×C4⋊C4C22×Q8C2×Q8C42C2×C4C4C2
# reps1421422164422

Matrix representation of C42.394D4 in GL6(𝔽17)

1300000
0130000
0016000
0001600
0000160
0000016
,
400000
040000
000100
0016000
00117115
0029116
,
080000
800000
00160010
001413710
00310411
005501
,
090000
800000
0071410
001414115
0010131311
0087120

G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,0,13,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,16,11,2,0,0,1,0,7,9,0,0,0,0,1,1,0,0,0,0,15,16],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,16,14,3,5,0,0,0,13,10,5,0,0,0,7,4,0,0,0,10,10,11,1],[0,8,0,0,0,0,9,0,0,0,0,0,0,0,7,14,10,8,0,0,14,14,13,7,0,0,1,1,13,12,0,0,0,15,11,0] >;

C42.394D4 in GAP, Magma, Sage, TeX

C_4^2._{394}D_4
% in TeX

G:=Group("C4^2.394D4");
// GroupNames label

G:=SmallGroup(128,193);
// by ID

G=gap.SmallGroup(128,193);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,520,1123,851,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a^2*b^-1,b*d=d*b,d*c*d^-1=a^2*b*c^3>;
// generators/relations

׿
×
𝔽